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Abstract 

The present study tested the possibility of operationalizing levels of knowledge acquisition 

based on Vygotsky’s theory of cognitive growth. An assessment tool (SAM-Math) was 

developed to capture a hypothesized hierarchical structure of mathematical knowledge 

consisting of procedural, conceptual and functional levels. In Study 1, SAM-Math was 

administered to 4
th

-grade students (N = 2216). The results of Rasch analysis showed that the 

testprovided an operational definition of the construct of mathematical competence that 

corresponded to the theoretically-based hierarchy of knowledge. In Study 2, SAM-Math was 

administered to students in 4
th

, 6
th

, 8
th

 and 10
th

 grades (N = 396) to examine developmental 

changes in the levels of mathematics mastery. The results showed that the mastery of 

mathematical concepts presented in elementary school continued to deepen beyond 

elementary school, as evidenced by a significant growth in conceptual and functional levels 

of knowledge. The findings are discussed in terms of their implications for psychological 

theory, test design and educational practice.  
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Operationalizing levels of academic mastery based on Vygotsky’s theory:  

The study of mathematical knowledge 

In the area of developmental psychology and educational research, Vygotsky’s 

sociocultural theory of development occupies a prominent position (Albert, Corea, 

&Macadino, 2012; Cole, 1996; Gredler& Shields, 2008). This theory haswidely influenced 

both psychological research and educational practice, including the design of assessment 

tools and instructional approaches. For example, the concept of Zone of Proximal 

Development has led to the idea of dynamic assessment and the notion of scaffolding as an 

instructional tool that can be used to facilitate children’s learning (Karlström&Lundin, 2013; 

Kozulin,1995; Poehner, 2009; Scrimsher&Tudge, 2003; Wertch&Tulviste, 1992). Other 

concepts, however, have attracted attention and generated theoretical discussions but have not 

yet been empirically tested. In particular, while Vygotsky (1978) wrote broadly about 

different levels of knowledge, there is still a need to operationalize his construct of 

knowledge in the developmental context. 

According to Vygotsky’s theory, cognitive growth can be described as a process of 

internalizingculturally transmitted knowledge, which involves acquisition of generalized 

schemas of thinking and symbolic systems (Vygotsky, 1978; 1994a).Exposure to cultural 

models stimulates a gradual internal process of knowledge development. At the early stages 

of this process, individuals master specific procedures and associative links. At this level, 

their problem-solving very much relies on external characteristics of the problem; their ability 

to solve problems depends on how similar they are to the ones that had been directly taught.  

From this level, knowledge continues to develop to a more deep-level understanding of 

conceptual relations underlying learned procedures and finally, to the highest level of 

understanding that allows a person to see the boundaries of the knowledge acquired and to be 

able to consider a multitude of possible relations within these boundaries. These theoretical 
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ideas have been expanded in the work of Galperin (1998),Davydov (1972, 1996), 

Elkonin(1989) and Nezhnov (2007)who outlined criteria for defining the mastery of 

successive levels of knowledge. 

Up to now, there have been no direct ways of assessing the different levels of mastery 

within the outlined theoretical framework. There has been some work, in which levels of 

knowledge acquisition have been discussed in thecontext of the sociocultural theory, yet the 

empirical basis of these discussions includedprimarily qualitative classroom observations 

(refs). There are no currently available quantitative instruments that demonstrate the 

existence of atheoreticallypredicted hierarchy in children’s mathematical knowledge.Yet, 

operationalizing the levels of academic mastery hypothesized by Vygotsky and his followers 

is not only important for testing the theory, but also for applied – educational – reasons. It is 

critical to provide educators with measurement tools that will allow them to obtain not just a 

quantitative picture of the relative rankings of different students, but a substantive 

characterization of students’ knowledge, which should lead to identifying more precise 

targets for intervention. Such characterization can be conceptualized in terms of a 

hierarchical model reflecting different levels of mastery in an academic domain.  

Thus,in the current studywe present an approach to assessing mathematical 

knowledge that is rooted in the theoretical foundation created by Vygotsky. By doing so, we 

address a current gap between one of the most powerful developmental theories and the 

practice of educational testing. Specifically, we propose an assessment tool designed to 

capture a hierarchical structure of mathematical knowledge. We then determine whether 

empirical data supports the theoretical construct that provides the basis for this new 

assessment tool, followed by an analysis of the application of this tool to the study of 

developmental changes in the nature of mathematical skills.  

Levels of mathematical knowledge 
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According to Vygotsky’s theory, learning plays a key role in the process of cognitive 

development, extending children’s skills by creating a Zone of Proximal Development 

(ZPD). It is important to point out that the act of transferring information during formal math 

instruction is viewed as an impetus for subsequent internal development, but the process of 

internalization does not end when instruction ends (Vygotsky, 1978). In fact, based on this 

view, knowledge continues to develop well past the point when it was formally taught, 

gradually proceeding through different levels of depth.In recent work, researchershave 

attempted to provide more concrete psychological interpretation of this view, which required 

focusing on specific academic domains and defining criteria for distinguishing knowledge 

levels within a particular domain (Nezhnov, Kardanova, &Ryabinina, 2014).In this work, 

three increasingly complex levels of mastery have been proposed: (1) procedural knowledge, 

(2) conceptual understanding, and (3) functional competence.Below we provide the 

characteristics of the three levels in the context of mathematical learning, illustrated by two 

sets of examples. One set of problems represents the domain of numeric reasoning and the 

other represents the domain of geometric reasoning. In both cases, the examples reflect the 

mathematical content taught in elementary school and thus can be used to assess the depth of 

knowledge at the end of elementary school.  

INSERT FIGURE 1 ABOUT HERE 

Level 1: Procedural. The extent of understanding is relatively narrow, mostly 

encompassing knowledge of specific algorithms and standard procedures that have been 

directly taught. In problem solving at this stage, students are mostly oriented towards external 

(descriptive) features of the problem, which allow them to identify it as belonging to a 

particular category and invoke an algorithm used for this category of problems. In this case, 

the description of a problem can be associatively linked to a learned procedure.In other 
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words, the student does not have to make an effort to extract the underlying conceptual 

meaning.  

An example of a fourth grade math problem requiring numerical reasoning at this 

level is presented in Figure 1 (problem 1A). In this case, the formulation of the problem 

contains direct clues about the required operation, namely division. Thus, to solve the 

problem, the student needs to divide a 5-digit number by a 2-digit number, which requires 

recalling a learned algorithm of long division and executing it correctly. The problem is 

presented in a standard way that should be familiar to a student who has learned the 

corresponding topic. The student still has to know how the algorithm works and some 

students, especially at the early stages of learning, may find it challenging to follow the steps 

of the procedure. However, once the procedure is mastered, there is no need to discover new 

ways of applying this knowledge outside of a standard context. A parallel example of a 

fourth-grade problem tapping the procedural knowledge of spatial measurement can be seen 

in Figure 1 (problem 1B). In this case, students are presented with a standard problem – 

calculating the area of a rectangle – and the presentation format is familiar to students who 

have been taught about areas of simple figures. The problem can be solved by iterating the 

square unit across the target rectangle. Applying this procedure in a straightforward way and 

using careful and systematic unit counting should bring the student to a correct response.  

 Level 2: Conceptual. Students begin to understand not only how to solve problems 

whose formulation easily leads them to the use of known algorithms, but also how to solve a 

whole range of problems related to the same concept, regardless of whether they are 

formulated in a standard or novel way. Solving problems at this stage generally requires 

understanding a mathematical principle, or a fundamental relation underlying a particular 

concept. In contrast to the previous level, the problems of this level are often formulated in a 

way that makes it difficult to map their description onto a given algorithm. The student needs 
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to analyze the meaning of the problem, which may require transforming its description in 

order to understand how to approach its solution.  

An example of a fourth grade numeric problem at this level is presented in Figure 1 

(problem 2A). To solve this problem, the child needs to reconstruct the computationalsteps 

carried out by someone else and to correct the erroneous part. What makes this problem a 

level 2 problem is that the child most likely cannot rely on a known algorithm to solve it but 

rather has to create an algorithm by taking into account the unique situation captured in the 

problem. In other words, the child needs to combine their logical understanding of the 

situation described in this problem with knowing how that situation can be modeled through 

mathematical means. A parallel example of a measurement problem is presented in Figure 1 

(problem 2B). Here, the students have to measure the area of a target figure with a given 

square unit, but in contrast to the problem in row 1, they cannot simply move the unit across 

the figure. In this case, students need to have a deeper conceptual understanding of the 

relation between a unit of area and the area of the measured object, and in particular 

appreciate the fact that unit is a relative notion and that both the target object and the unit 

itself can be divided into smaller units, which can be later recombined. Whereas students at 

the procedural level often feel confused when presented with non-standard shapes and 

especially when the unit cannot be easily mapped onto the target shape, the students at the 

conceptual level realize that the shape similarity between the unit and the target is not a 

requirement for determining the area.   

 Level 3: Functional.Students must developthe depth of understanding and conceptual 

flexibility that will allow them to see a full range of possiblemental “moves” within the 

problem space and identify the sequence of moves that leads to a solution.Just like in level 2 

problems, students master the concept in a generalizable way, so that they can solve novel 

problems. However, in addition to this, the problems at level 3 necessarily require that the 
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child compares multiple ways of approaching the problem. In a way, the child should carry 

out a series of mental experiments and compare their results.  

An example of a fourth grade problem at this level is presented in Figure 1 (problem 

3A). In solving this problem, the child may realize that they should use the largest digits for 

the highest place value. To assign specific digits to specific letters, the child may need to 

generate possible versions of a solution. However, unlike a simple trial-and-error (blind 

search), this exploration should be guided by the understanding of the place value and the 

need to maximize hundreds, then tens, then ones. An example of a measurement problem is 

presented in Figure 1 (Problem 3B). Just like a numerical problem at this level, this area 

problem requires the student to carry out some mental experimenting. In this case, students 

need to use both their conceptual understanding of area and their spatial reasoning skills (in 

particular, mental manipulation of objects) to determine the correspondence between the size 

of the unit and the size of the target figure. One way to solve this problem is to construct an 

imaginary rectangle that is comprised of two triangles congruent to the target figure. By 

determining how many unit triangles can fit into this rectangle and dividing the resulting 

number in half, one can arrive at the correct response.  

Capturing the distinction between levels of knowledge 

The instrument developed for the present study (Student Achievement Monitoring in 

Mathematics, or SAM-Math) was designed to assess the mastery of basic mathematical 

concepts typically taught in elementary school by capturing the three-level hierarchy 

described above.By the end of elementary school, students are typically introduced to a 

variety of mathematical content that serves as a basis for subsequent learning in mathematics. 

Thus, a team of experts in developmental psychology and mathematical education generated 

a pool of math problems covering the range of mathematical content that is expected to be 

learned in elementary school. Since SAM-Math was developed in Russia, the selection of 
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specific content areas was based on the Russian educational standardsin mathematics 

(http://www.school.edu.ru/dok_edu.asp?ob_no=19815). It should be noted though that the 

selected content areas correspond to those listed in the guidelines issued by the National 

Council of Teachers of Mathematics in the United States (NCTM, Principles and Standards 

for School Mathematics, http://www.nctm.org/standards/content.aspx?id=16909). These 

content areas include: (1) Numbers and Operations; (2)Relations and Functions, (3) Patterns, 

(4) Measurement,and(5) Geometry. 

The critical feature of SAM-Math is thatthe test items within each contentarea vary 

systematically with respect to the depth ofknowledge required. That is, each of the five areas 

of mathematics included in the testis represented by problems tapping the three levels of 

mastery. Test developers outlined specific criteria within each content area for the types of 

problems that require a particular level of mastery (Nezhnov&Kardanova, 2011). Table 1 

provides examples of concepts tested in two of the content areas(e.g., the concept of place 

value in the domain ofNumbers and Operations andthe concept of unit in the domain of 

Measurement). As shown in Figure 2, all the test items are blocked into groups of three – 

while all the items within one block target the same content, they differ in the required depth 

of knowledge. Having a set of three problems representing the same content area allows us to 

determine the level of mastery in that area based on the highest-level problem solved 

correctly.  

INSERT FIGURE 2 ABOUT HERE 

Research Questions and Hypotheses 

 The specific aims of the present investigation were twofold. First, we sought to 

determine whether the test items constructed to representthe three levels of mastery indeed 

demonstrated an empirically-based hierarchy of difficulty corresponding to the theoretically-

based hierarchy of knowledge levels. To address this question, we conducted Study 1, in 
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which the SAM-Math test was administered to a large sample of students, and submitted the 

data to item analysis and theory confirmation under the Rasch model (Rasch, 1980). We 

hypothesized that the structure of the test would reflect the three successive hierarchical 

levels of mastery described above: procedural knowledge, conceptual understanding, and 

functional competence,  

Second, we explored changes in the distribution of levels of mathematical mastery 

across different grade levels. The problems included in the SAM assessment cover the 

mathematical concepts taught at the elementary school level. Yet, according to Vygotsky’s 

theory, learning leads development – that is, the highest level of mastery of the elementary 

math concepts, indicative of the full internalization of this culturally acquired knowledge, can 

be expected to extend beyond elementary school (Vygotsky, 1994b). In this view, the 

functional assimilation of the learned concepts – the ability to use them flexibly across a 

variety of contexts – occurs primarily after the formal instruction is completed (Vygotsky, 

1986). To address the developmental aspect of mathematical learning, we conducted Study 2, 

in which the SAM-Math test was administered to students in 4, 6, 8, and 10
th

 grades. We 

hypothesized that by 4
th

 grade, most students will master presented mathematical content at a 

procedural level. While a large number of 4
th

 graders will master this content at a deeper, 

conceptual, level, we can expect a further development within this level in middle school. 

With respect to functional competence, we predicted that for the most part its development 

will occur beyond elementary school. 

Study 1 

 Method 

The development ofSAM-Mathtook two years, from the springof 2010 to the fall of 

2012.This work involved outlining criteria for the three levels of mastery within each of the five 

content areasand designing test items representing each level, as well as securing reliability and 
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validityinformation for the assessment.Study 1 was conducted to examine whether the 

empirically-based hierarchy of students’ performance on test items confirmed the theoretically-

based hierarchy of math knowledge acquisition.  

Participants.The participants included 2216 fourth-grade studentsrecruited from 192 

elementary schools (293 classrooms) in the Russian Federation. Fourth grade was chosen because 

it is the last year inRussian elementary schools; children enter first grade around the age of 7 

years, therefore by the end of fourth grade their age range is 10-11 years. The sample was 

approximately evenly divided by gender: 47% boys, 53% girls.  

All participatingschools were located in one of the central regions of Russia.This region 

was selected because its socio-economic characteristics (e.g., average salary, unemployment, 

educational level, urban-to-rural ratio) were similar to those in the entire country, based on 

census results(Social and Demographic Portrait of Russia, 2010). For example, the 

distribution of the region’s population by educational level (62% college and above, 30% 

high school, 8% below high school) was parallel to that in the country (65% college and 

above, 29% high school, 6% below high school).Also, the ratio of urban to rural students in 

the region(72% urban, 28% rural) was similar to that in the country (71% urban and 29% 

rural).The regional department of education, in consultation with school principals, provided 

permission to conduct the study. Thus, the region’swhole population of fourth grade students 

took part in the study. There was no selection at the school or classroom level.  

Instrument.The SAM-Mathtest includeda total of 45 items, divided into 15 blocks in 

accordance with the test structure presented in Figure 1. As indicated earlier, the items 

represented five different content areas. The number of items varied across content 

areas,reflecting differential focus on particular topics in the elementary curriculum. For 

example, the area of Numbers and Operations(12 items) takes up a much larger part of 

elementary instruction and covers a larger number of topics than the area of Geometry (6 

items).It should be noted that SAM-Math is not intended to provide a separate assessment of 
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students’ knowledge within each specific content area, but rather to provide information 

about the level of a student’s mastery of mathematics across the different areas taught in 

elementary school. 

Items in thearea of Numbers and Operationsassessed children’s understanding of 

number systems, relations among numbers, meanings of operations, as well as their ability to 

perform calculations. The content area of Relations and Functionsincluded problems that 

required analyzing quantitative relations (particularly those captured in word problems) and 

representing these relations using mathematical symbols. Another content area introduced in 

the elementary school that is critical for the development of algebraic thinking is Patterns. 

Items representing this area included either numeric or spatial patterns that required children 

to determine the rule governing relations between different elements and predict subsequent 

elements based on their position in the pattern. Measurement problems required the 

knowledge of measurement algorithms and procedures as well as conceptual understanding 

of measurable attributes of objects, the notion of unit, and the relation between the unit and 

the quantity to be measured. Geometry problems required the analysis of properties of 

geometric shapes, understanding spatial relations among objects and determining locations.  

The majority of test items (37 out of 45, or 82%) hadan open-ended format.They 

requiredeitherprovidinga brief numeric response or a simple drawing in the test booklet (for 

example, completing a shape pattern or placing a dot in a certain location within a figure).The 

remaining items (8 or 18%) had a multiple-choice format with a choice of one or more 

correct answers from 4-5 options.The multiple-choice items were evenly distributed across 

the test – they were not concentrated in any particular content area or knowledge level. All 45 

items were assembled in a booklet; three items comprising each block were presented 

consecutively in the same order: levels 1, 2, and 3.  
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Procedure.In each participating classroom, the test was administered to the whole class 

by the teacher. The teachers helped children complete participant information on the front 

page of the test booklet, provided instructions and kept track of the time. The testing was 

conducted on the same day,during two 45-minute testing sessions with a 15-minute break 

between them.This amount of time and the format of test administration, which were 

determined based on prior pilot testing, were sufficient for 4
th

 graders to complete test. The 

data collection for the whole sample was completed within a two-week period. When the data 

were collected, all items were scored dichotomously: a student received 1 point for a correct 

response and 0 for an incorrect or missing response (with a maximum total of 45 

points).Students’ scores were subjected to a series of analyses described in the next section.  

Results 

We begin with a classical analysis of psychometric properties of the test, followed by 

the findings of Raschanalysis. 

Psychometric Properties of the Test.The results of the classical analysis of test 

characteristics are presented in Table 1. The item difficulty levelrefers to the proportion of 

students solving test problems correctly. A level of 0.61 indicates thatthe test was moderately 

easy. The range of item difficulty is wide, with the most difficult item solved correctly by 

only 16% of participants and the easiest item solved correctly by 98% of participants. As a 

measure ofitem discrimination level (i.e., the item’s ability to discriminate between high- and 

low-performing individuals), we use the point bi-serial correlation, measured as a correlation 

between performance on a single item and the whole test. Generally, values of the point bi-

serial correlation of 0.2 and above are considered as acceptable indicators of the item’s ability 

to differentiate among test takers. In our data, the point bi-serial correlation for 2 of the 45 

items was .15 and .16 (these were the easiest items that were solved correctly by most 



15 

 

students, including high- and low-performers). Yet, for the majority of items (43 out 45)the 

values of this index were between 0.25 and 0.55. 

INSERT TABLE 1 ABOUT HERE 

Rasch Analysis.The main portion of our analysis included application of 

theRaschdichotomous measurement model (Rasch, 1960; Wright & Stone,1979) as a 

confirmatory test of the extent to which our assessment scale was successful in capturing the 

three-level hierarchy of mathematical knowledge acquisition. It should be noted that in 

addition to this analysis, in which the test is treated as unidimensional, we examined an 

alternative model - the Multidimensional Random Coefficients Multinomial Logit Model 

(Adams, Wilson, & Wang, 1997). We found that the statistical parameters of the 

unidimensional model were either equally appropriate or better than the multidimensional 

model in describing the data. In particular, the Akeike’s Information Criterion (AIC) and the 

Bayesian Information Criteion (BIC) had better values in the unidimensional model. 

Furthermore, the correlations among the three dimensions of the multidimensional model 

were very high, indicating that they measured the same variable. This is consistent with our 

conceptualization that the three levels of mastery (procedural, conceptual and functional) do 

not represent different latent variables but rather capture the differences in the levels of 

acquisition of the same latent construct: mathematical knowledge.  Thus, we proceeded with 

the unidimensional model.  

We begin reporting results of the Rasch analysis by presenting the “variable map” 

addressing the main question of the study – whether the difficulty structure of the items 

corresponds to the a priori theoretically-specified hierarchy. We then examine the fit between 

our data and the Rasch model. Next, we perform a series of principal components analyses 

(PCA) on the standardized residuals. These analyses serve as checks on the presence of 

multidimensional effects, thus testing one of the measurement criteria of Rasch models – 
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namely, that items operationally define a continuum along a unidimensional variable. 

Winsteps software (Linacre, 2011) was used for parameter estimation and data analysis. 

Variable map.Figure 3 presents the Raschvariable map (also referred to as a construct 

map or Wright map, depending on the literature source), which shows the relative distribution 

of items and test takers in a common metric. Specifically, the variable map depictsthe joint 

distributionof items operationally defining the mathematics variable and the locations of 

students, based on their total correct scores, along this variable.The left column is the 

“logit”unit of measurement scale(Ludlow &Haley, 1995; Wright &Stone, 1979). An item 

logit is the log odds difficulty associated with a task, i.e. more difficult items have higher 

positive valued logits. A person logit is the log odds ability associated with a person, i.e. 

more able students have higher positive valued logits. On the map students are represented on 

the left side and the items are on the right. More difficult items and higher-performing 

students are located in the upper part of the map (positive logits), while easier items and 

lower-performing students are placed in the lower part of the map (negative logits). 

INSERT FIGURE 3 ABOUT HERE 

The studentsample is located relatively high on the mathematics variables, which 

means that the test wasrelatively easy for this student group as a whole—the average SAM-

Math score, transformed into logits, is located at the position indicated by the “A”. This result 

is consistent with the finding reported earlier regarding the mean percent correct value of .61. 

The mean item difficulty location is indicated by the “M”. The distribution of students is 

wide and represents, for measurement purposes, excellent differentiation between higher and 

lower scoring students. The distribution of item locations, too, is excellent because the span 

includes very easy items appropriate for less able students and very difficult items 

appropriate for advanced students. Furthermore, the progression of items from easier-to-more 

difficult represents a smooth, uniform,progressive continuum of increasing difficulty. 
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Wright and Masters (1982) recommend the examination of clusters of items on the logit 

scale as a basis for the interpretation of a latent variable. SAM-Math items, as realizations of 

the latent Vygotsky-based mathematics variable, define three easy to identify clusters. 

Specifically, all the Level 1: Proceduralitems are located in the lower part of the map up to 

approximately -1 logit, further up the continuumare the Level 2: Conceptualitems ending at 

about +1 logitand, still further up the mathematics variable arethe Level 3: Functionalitems. 

Clearly, this ordering of items from one level to the next is consistent with the hypothesized 

structure of the Vygotskian-based assessment intended by the test developers.  

The finding that the items form three clear and meaningful clusters consistent with 

theoretical expectations is complemented by the analysis of student groupings, which was 

done by calculating the so-called person separation index (Wright & Stone, 1979; Stone, 

2004). This index compares the distribution of person measures (estimates of ability) with 

their measurement errors and indicates the spread of person measures in standard error units.  

The index is used to estimate the number of distinct levels, or strata (separated by at least 

three errors of measurement), in the distributions(Wright & Stone,1979; Smith, 2001). The 

number of strata are calculated as: Strata=(4G+1)/3, where G is the separation index. Our 

analysis produced a person separation index of 2.66, indicating four statistically distinct 

groups of students along the SAM-Math continuum. To follow up on this finding, we later 

present an analysis of proficiency levels, with four distinct groups formed on the basis of 

students’ SAM-Math scores.  

Model fit.Rasch goodness-of-fit analyses rely principally upon standardized residuals – the 

difference between the observed response and the response expected under the model (Wright 

&Stone, 1979). The residuals are squared and summarized in the form of unweightedand 

weightedmean squares (in terms of Winsteps output: OUTFIT MNSQ and INFIT MNSQ, 

respectively). It should be pointed out thatOUTFIT MNSQ is known to be very sensitive to 
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unexpected responses (Smith, 1991). Thus, INFIT MNSQ statistics that are weighted by the 

information function and take into account the variance of expected responses are more useful for 

the present goodness-of-fit analysis, namely, for the question of how consistent with model 

expectations the overall response patternsare. Generally, a criterion of +1.2 for item INFIT 

MNSQ statistics is used to flag potential problems. Our analysis showed that the value of INFIT 

MNSQitem statistics in the present sample varied from 0.84 to 1.12 with a mean 1.00 and SD = 

0.07. This result indicates that all items in our 45-item test fit the model in accordance with the 

chosen criteria.  

A similar approach was used to analyze person fit. Utilizing the same misfit criteria as 

above (+1.2), we identified students (n=317, or 14% of the total sample)with responses to test 

items whichwere unexpected. Note that since all the items were scored dichotomously, even 

one or two unexpected responses (e.g., a high ability student who failed to complete an easy 

item) could generate large value of person fit statistics. To put our findings regarding person fit 

into context, we simulated three data sets that fit the model perfectly. We calculated a number of 

students with INFIT MNSQ statistics out of range (above 1.2) for the three simulated data sets; 

they were 298, 311 and 294. Across the three sets, the average number of misfitting students was 

301 students (or 14%). Thus, the percentage of students that can be considered as misfitting in 

our data was the same as that obtained with simulated data sets that had a perfect model fit. 

When we analyzed the response profiles of students with fit statistics out of range, we 

identified two categories of misfitting students. The first category included high ability 

students who answered incorrectly 1-3 easy items. For example, the most misfitting student 

(INFIT MNSQ= 1.00 while OUTFIT MNSQ=9.9) had a very high ability level yet two of this 

student’s five incorrect responses were on two of the easiest items on the test – one of them 

was in the beginning of the test while another one in the end. This pattern is consistent with 

“start-up” and “fatigue” effects frequently reported in the literature (Ludlow, Costa, Johnsen, 

Brown, Bessan, James, 2014). The second category includedlow ability students who 
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answered 1-3 difficult items correctly. These responses were found at all three levels and in 

different blocks; they appeared to be due to chance.  Furthermore, there was no systematic 

connection among these students based on demographic or school characteristics. 

Dimensionality.We examined the dimensionality of the SAM-Math by conducting a 

principal component analysis (PCA) of the standardized residuals(Linacre, 1998;Ludlow, 

1985; Smith, 2002). The PCA serves as a check on the unidimensionality and local 

independence assumptions of the Rasch model. Theoretically, if the assumptions hold, then 

correlations between item-level residuals should be near zero.If there is no second dimension 

remaining in the residual variation, then the principal component analysis should generate 

eigenvalues all near one and the percentage of variance across the components should be 

uniform. The eigenvalues of the SAM-Math residual correlation matrix for 44 of 45 

components ranged roughly from 1.5 to 0.7 and the eigenvalue for the last component is 

0.174. In addition, the variance accounted for in the distribution was roughly evenly split 

across components.  

To obtain further evidence of the test’s unidimensionality through the randomness of 

the SAM-Mathresiduals we performed “tailored” simulations on random data with the same 

student ability and item difficulty structure (Linacre, 2011; Ludlow, 1985).The result of those 

steps revealedeigenvalues, percent of variance accounted for estimates, and plots of the first 

two components of the residualsthat were strongly consistent with the observed residual 

results. Moreover we performed a parallel analysis (Henson & Roberts, 2006) wherein we 

simulated 100 sets of eigenvalue analyses and the magnitudes of the first five eigenvalues of 

these random data were consistent with the magnitude of the eigenvalues from our residuals. 

Based on these results, there is no evidence of either multidimensionality of content or of a 

violation of local independence. 

Benchmarking 
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Given the technical strength of the SAM-Math, benchmarks were established to 

helpseparate participants into groups according to the level of their achievement. The 

benchmarks reflected the three levels of our theoretical model, resulting in four distinct 

groups shown in Figure 4 (with the lowest-achieving group not having acquired Level 1 skills 

and the highest-achieving group having acquired Level 3 proficiency).  Specific methods of 

developing benchmarks are described in detail elsewhere (Kardanova&Nezhnov, 2011). It 

should be pointed out that a benchmark indicates the lower limit of a corresponding 

proficiency level. If a student’s test score exceeds the benchmark, it means that there is a 50% 

probability that this participant will be able to complete more than 50% of items of this level. 

All students whose test results are under a given value are considered as someone who did 

not acquire this proficiency level (as well as all the subsequent ones).  

INSERT FIGURE 4 ABOUT HERE 
 

Figure 5 shows the distribution of test participants on proficiency levels for the sample 

included in Study 1. By fourth grade, most students presented with problems that tap 

mathematical content introduced in elementary school were able to solve problems not only 

at a procedural, but also at a conceptual level. Yet, the performance on problems reflecting 

the highest – functional – level of mastery was relatively low, even by the end of elementary 

school. This result is not surprising as Vygotsky’s theory predicts that the development of the 

highest level of understanding of academic content proceeds beyond the point when this 

content has been presented to children (i.e., the notion of learning leading development).  

INSERT FIGURE 5 ABOUT HERE 

 

Summary of Results.The empirical findings obtained with the new testing 

instrument, SAM-Math, indicate that theconstructstructure of the test itemscorresponded to 

our theoretical expectations. The dimensionality analysis shows that the test items captured a 

single dimension of children’s performance (presumably, their mathematical achievement in 
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elementary school). The variable map indicates that the itemsdesigned to reflect each of the 

threelevels of mathematical mastery indeed clustered together and were ordered as 

expected.Finally, the benchmarks highlight a means of providing a practical interpretation of 

scores both in terms of current performance and development upwards along the mathematics 

continuum. In Study 2, we examine the developmental course of the acquisition of 

foundational mathematical concepts introduced in elementary school. To do so, we presented 

SAM-Math to students across four grade levels, spanning elementary to high school. 

Study 2 

Method 

Participants.Study 2 participants included 396 studentsrecruited from 2 schools located 

in a large city inRussia (2 classrooms at each grade level per school).All students in participating 

classrooms took part in testing. This included 104 fourth-graders (53% girls), 103 sixth-graders 

(48% girls), 104 eighth-graders (40% girls), and 85 tenth-graders (51% girls). 

Based on reports from local education officials and researchers, the participating schools 

served children from middle- and upper-middle class families and had a reputation as high-

performing schools (statistical data on the socio-economic background of students from particular 

schools are not publicly available in Russia). Although this sample was not representative of the 

general student population in the county, our main goal was to obtain a sufficient number of 

students at different grade levels from comparable socio-economic and educational backgrounds 

so that we could conduct comparisons across grades. The choice of high-performing schools was 

purposeful. Since Vygotsky’s theory predicted a gradual development of the functional level of 

knowledge (with a full mastery of basic concepts achieved well beyond elementary school), 

assessing high-performing students provided a strong test of this prediction. In contrast, 

observing a slow progress from procedural to functional levels in low-performing students could 

reflect a weakness of their educational input rather than the nature of the developmental process.  



22 

 

Instrument and Procedure.The testing instrumentand procedure were the same as 

those in Study 1. Assessment was conducted at the end of the school year. Data collection for 

all age groups was completed within one week.  

Results 

Before comparing students’ performance across the three levels of mastery, we 

examined the overall characteristics of test items (average difficulty and discriminability) 

bygrade. The results are presented in Table 2. As shown in the table, the values of the 

discrimination index were in the acceptable range (i.e., above 0.2) and very similar across 

grade levels.The overall level of performance increased with age, as can be expected.  

INSERT TABLE 2 ABOUT HERE 

While the difficulty of the test as a whole changed across grades, an important question 

is whether the relative difficulty of individual items remained consistent fromone grade to 

another. To address this question, we computed correlations between items difficulties for 

different grades. Results presented in Table 3 show very high positive correlations for all 

pairwise comparisons among grades, indicating a high degree of invariance in the difficulty 

hierarchy of test items. Even the correlation between item difficulties in grades 4 and 10 was 

above .90, indicating that the items that were more difficult in grade 4 also tended to be more 

difficult, compared to other items, in grade 10.  

INSERT TABLE 3 ABOUT HERE 

Next, we tuned to the analysis of performance on the three types of items (procedural, 

conceptual and functional) across the five grades examined. (See Figure 6.) Students 

demonstrated highaccuracy on procedural items(Level 1) even in fourth grade, which is 

consistent with the characterization of our sample as high-performing.Conceptual and 

functional items (Levels 2 and 3) proved more challenging. In fact, performance on Level 3 
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items was far from ceiling even at grade 10. As shown in Figure 6, the difficulty hierarchy 

among the three levels remained invariant across grades.  

INSERT FIGURES 6 ABOUT HERE 

While Figure 6 depicts average results for the three levels of mastery, it is also useful to 

take a closer look within a given level. Figure 7illustrates the accuracy of performance on 

itemstapping children’s functional competence (Level 3).This figurereveals widegrade-

related differences in performance on individual items,but at the same time it shows very 

similar patterns of relative difficulty for Level 3items across grades.  

INSERT FIGURES 7 ABOUT HERE 

To compare statistically the accuracy of performance on different types of items across 

grades,we conducted a repeated-measures ANOVA with the proportion of correctly solved 

items as the criterion variable. Predictor variables included: item type (within-subject), grade 

and sex (both between-subject variables). The 3(Item Type) x 5 (Grade) x 2 (Sex) ANOVA 

showed main effects of Item Type, F(2, 776) = 1451.55, p< 0.001, ηp
2
 = 0.79, and Grade, 

F(3, 388) = 51.49, p< 0.001, ηp
2
 = 0.29, and no effect for Sex, F(1, 388) = 2.76, p = 0.10, ηp

2
 

= 0.007. In a follow-up analysis, we comparedthe means for the three levels of the Item Type 

variable and the four levels of the Grade variable, using the LSD method. This analysis 

showed significant differences for all pair-wise combinations between procedural, conceptual 

and functional items; as well as significant pair-wise differences between 4
th

, 6
th

, 8
th

, and 10
th

 

grades, all p’s <.05. In addition to main effects, the ANOVA showed a significant interaction 

between Item Type and Grade, F(6, 776) = 31.01, p< 0.001, ηp
2
=  0.19.To examine the nature 

of the interaction, we conducted simple effect tests, which showed no differences among 

grades on Level 1: Procedural items, F(3, 388) 1.80, p = 0.15, ηp
2
 =0.007, but significant 

grade differences on both Level 2: Conceptual items, F(3, 388 ) = 20.32, p< 0.001, ηp
2
 = 0.23, 

and Level 3: Functional items, F(3, 388) = 43.66, p< 0.01, ηp
2
 =0.32. 
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We also examined our results by looking at the distribution of participants across the 

levels of proficiency based on the benchmarks described in Study 1.Figure 8presents this 

distribution for the four grade levels examined.As shown in the figure, towards the end of 

fourth grade, the majority of students in this sample demonstrated the second level of 

proficiency, which is indicative of their ability to solve more than a half of problems tapping 

their conceptual understanding of mathematical content covered in elementary school. 

Comparing the performance of fourth graders in Studies 1 and 2 as depicted in Figures 3 and 

5, we see that the more selective sample (Study 2) had a higher percentage of students at 

the2
nd

 level and a lower percentage of students atthe 1
st
level than the less selective sample 

(Study 1). Interestingly, there were no noticeable differences between the two samples at the 

3
rd

 level. The percentage of students at this – highest – level of proficiencyincreased steadily 

across grades, reaching the majority of students in middle and high school. 

INSERT FIGURE 8 ABOUT HERE 

Discussion 

 The present investigation tested the possibility of operationalizing the levels of 

knowledgeacquisition that were initially proposed by Vygotsky and further developed by his 

colleagues. The test used in the present study (SAM-Math) was designed to capture the 

distinction between procedural, conceptual and functional levels of knowledge. Specifically, 

the test included blocks of items that targeted the same content area but at three different 

levels of mastery. One of our key questions was whether the theoretically-based hierarchy of 

knowledge levels would be reflected in the empirically-based hierarchy of students’ 

performance. Our analysis showed that the items designed to reflect each of the three levels 

of mastery indeed clustered together and were ordered as would be expected on theoretical 

grounds. Thus, we demonstrated a possibility to empirically distinguish between the different 
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types of knowledge within the same content domain. We believe that this demonstration has 

implications for psychological theory, test design, and educational practice.  

Operationalizing a Theoretical Construct 

 From a theoretical perspective, an empirical testing of a hypothesized construct 

provides a powerful means of determining its plausibility and understanding its advantages as 

well as limitations. Vygotsky’s notion of a gradual deepening(or internalization) of 

knowledge that is initiatedthrough teaching has attracted a lot of attention (e.g., Albert et al., 

2012; Cole, 1996; Poehner, 2009), yet the levels of knowledge acquisition remained to be 

operationalized. The present investigation tested a way of operationalizing the notions of 

procedural, conceptual and functional levels of knowledge in the domain of elementary 

school mathematics. Note that the distinction between procedural and conceptual knowledge 

has been widely used in current educational research and practice (e.g., Silver, 1986; Byrnes 

&Wasik, 1991). Yet there is no systematic understanding of this distinction and different 

areas of knowledge often use very different criteria. Here, we used the theoretical foundation 

developed by Vygotsky and his colleagues to create a general framework that was applied to 

different content areas within mathematics. Furthermore, this framework can be used in other 

domains, such as science or language knowledge. In fact, our colleagues have created a 

parallel test of linguistic skills that is currently being piloted. Similar to SAM-Math, SAM-

Language is comprised of blocks of items which tap different types of knowledge – 

procedural mastery of language (e.g., grammatical rules), conceptual understanding and 

functional competence. 

 In addition to its strong theoretical basis, the current distinction between levels of 

knowledge differs from the traditional conceptual/procedural distinction in that it introduces 

another level of knowledge– the level that we identified as functional competence. Vygotsky 

has broadly referred to this level as the ultimate stage of internalizing the concept. We must 
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acknowledge that the psychological nature of this level is not completely understood. In the 

present investigation, it was operationalized as an ability to mentally represent a range of 

operations that can be carried out within a given problem space. The kinds of items that were 

created to represent this level typically required that children carry out a mental experiment, 

generating and comparing several different approaches tosolving a problem and choosing the 

one that best satisfies given conditions. 

 This type of thinking is hypothesized to have a prolonged course of development. In 

fact, Vygotsky’ theory leads to a somewhat unusual prediction that the basic concepts 

presented in elementary school will not be fully acquired until much later. Typically, we 

expect that assessment instruments designed to capture learning in elementary school 

students will be too easy for middle-school and especially high-school students. Yet, SAM-

Math was designed to assess the same basic concepts (such as place value or unit of 

measurement) at different levels of depth, or different levels of mastery. Indeed our data 

showed that even high-school students did not perform at ceiling on functional-level 

items.Study 2 revealed a very gradual improvement in functional competence from 

elementary to middle school and then again from middle to high school. Perhaps this gradual 

improvement reflects the process of creating connections between students’ understanding of 

these concepts andbroader cognitive skills (e.g., development of cognitive flexibility, logical 

ability).  

Designing a Theory-Based Assessment 

 A key feature of the instrument used in the present study is that not only were the test 

items developed based on a systematic theoretical approach, but the same approach was used 

in interpreting students’ performance. It should be noted that many other math tests, 

including the ones that are used in large-scale international assessments, include groups of 

items that reflect different types of knowledge, such as knowing number facts versus problem 
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solving. Yet, when the test data are collected, students’ performance is often categorized 

based on a scale that does not map directly onto these substantive categories. In the present 

study, the initial theoretically-based distinction between knowledge levels was used not only 

to create test items but also to provide a framework for analyzing and interpreting students’ 

performance. To characterize students’ performance, we established benchmarks that 

reflected the three levels of our theoretical model. These benchmarks allow researchers and 

educators to capture the depth of a student’s current knowledge of basic mathematical 

concepts and track the development in the knowledge structure across grade levels. 

Implications for Further Research and Educational Practice 

 At the time of accelerating progress in science and technology, optimizing the process 

of mathematical learning and assessment has become one of the key educational goals. In this 

context, it is critical to provide educators with measurement tools that will allow them to 

better understand the level of their students’ mathematical learning. In addition to obtaining 

an overall score as a basis for comparing achievement among students, teachers and 

psychologist will benefit from a more substantive characterization of students’ knowledge. 

Vygotsky’s theory offers a systematic view of knowledge development that allows for a 

design of testing instruments that specifically aim at identifying the depth of mastery of 

academic material. This type of assessment can be used to track the progress of individual 

students (or groups) and to compare different groups (such as classrooms, schools or even 

countries). For example, it can be used to compare the outcomes of particular curricular 

approaches. Some contemporary elementary math programs emphasize conceptual aspects of 

numeric development, whereas other, more traditional, programs primarily focus on counting 

skills in early grades. The approach introduced in the present study would allow researchers 

to determine to what extent the first type of program facilitates the development of 

conceptual understanding and functional competence.  
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It should be noted that the generalizabilityof the present study is somewhat limited. 

Study 2, in particular, only involved children from high-performing schools. On the one 

hand, this allowed us to show that even for the studentsexposed to favorable educational 

environmentthe functional mastery of mathematical concepts occurs over a long time 

period.On the other hand, it restricted the generalizability of the findings. Thus, in future 

research, it is important to use SAM-Math with a broader range of students –in order to both 

increasegeneralizability and address substantive questions about the relation between 

educational environment and the growth of mathematical skills along the three levels of 

mastery. 

In sum, the present study offers initial empirical support for the hierarchical 

knowledge structure that is based on Vygotskian theoretical constructs. The new assessment 

tool, SAM-Math, which was designed to examine these constructs, has demonstrated sound 

psychometric propertiesand the Rasch analysis of scores obtained with this tool has indicated 

the clustering of items that directly maps onto the theoretically-hypothesized hierarchy of 

knowledge levels. We show that SAM-Math can be used as a tool to study developmental 

changes in the structure of mathematical skills and suggest that the ability of this type of test 

to provide a substantive characteristic of student performance is critical to facilitating a better 

understanding of student’s knowledge and designing effective instructional programs.   
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Table 1. 

Summary of results for SAM-Math, Study 1 

 

  Test form 1             

Number of examinees     2216  

Raw score out of 45 points: average (range)  26 (4-44) 

Standard deviation      8.2   

Item difficulty level: average (range)  0.61 (0.16-0.98) 

Item discrimination level: average (range)0.42 (0.15-0.59) 
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Table 2. 

 

Comparison of test item characteristics at different grades, Study 2. 
 

Grade Difficulty level 
(proportion correct) 

Discrimination index     
(point bi-serial correlation) 

Grade 4 0.64 0.35 

Grade 6 0.72 0.32 

Grade 8 0.81 0.34 

Grade 10 0.86 0.32 
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Table 3. 

Correlations between item difficulties across grades, Study 2 

 
        

 
Grade 4 Grade 6 Grade 8 Grade 10 

Grade 4 1 .93
**

 .93
**

 .91
**

 

 
   

     Grade 6 .93
**

 1 .94
**

 .94
**

 

 
 

 
  

     Grade 8 .93
**

 .94
**

 1 .96
**

 

 
  

 
 

     Grade 10 .91
**

 .94
**

 .96
**

 1 

 
   

 
     
  

 ** indicates significance at 0.01 level  
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Problem 1A 

 

A school district received 10472 new textbooks. These textbooks have to be 

divided equally among 34 schools. How many textbooks should be sent to each 

school?  

Problem 2A 

 

Peter copied a multiplication problem involving two numbers from the 

textbook. He wrote down the first number correctly: 7. In the second number, he 

accidently flipped two digits. The result he got was 147.What answer should 

Peter have gotten if he had copied the problem correctly?  

 

Problem 3A 

 

What is the largest result that can be obtained if letters in the expression AB5 + 

BС2 are substituted with digits (different letters should be replaced with 

different digits)?  

 
 

Figure 1A. Examples of numerical problems at the three levels of knowledge mastery 
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Problem 1B

 
Problem 2B

 
Problem 3B

 

 

Figure 1B. Examples of measurement problems at the three levels of knowledge mastery 
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Figure 2. Structure of the test SAM-Math 
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<high-skill students>|<harder items> 
logits 
 5             .  + 
                  .  | 
                     | 
                     | 
                     | 
                     | 
    4             .  + 
                     | 
                  .  | 
                 .#  | 
                  .  | 

.##  | 
    3           .##  + 
                  .  | 

.##  |  M-C-01-1-3  M-D-08-1-3  M-R-05-1-3 
.###  |  M-G-01-1-3 

                 ##  |  M-M-11-1-3 
            .######  | 
    2        .#####  +  M-C-03-1-3 

.######  |  M-D-05-1-3 

.#######  | 

.#########  |  M-D-03-1-3  M-M-08-1-3 

.######  |  M-M-02-1-3  M-R-02-1-3  M-R-03-1-3 
      #############  | 
    1    .#########  +  M-M-03-1-3  M-M-06-1-3 

.####### A|  M-C-05-1-3 M-G-01-1-2 M-M-06-1-2 M-M-08-1-2 

.#######  |  M-R-02-1-2 

.########  |  M-D-03-1-2 

.##########  |  M-M-11-1-2 
            #######  |  M-C-05-1-2 
    0       .######  +M M-C-01-1-2  M-R-03-1-2 

.#####  |  M-D-08-1-2  M-M-03-1-2 

.#######  |  M-R-05-1-2 

.####  |  M-C-03-1-2  M-M-02-1-2  M-R-02-1-1 

.####  |  M-D-05-1-2  M-M-06-1-1 
               .###  | 
   -1            .#  + 

.###  |  M-D-03-1-1  M-D-05-1-1 
.##  |  M-C-05-1-1  M-G-01-1-1 

                 ##  | 
.#  |  M-M-03-1-1 
.#  |  M-M-02-1-1  M-M-11-1-1  M-R-03-1-1 

   -2            .#  +  M-M-08-1-1 
                 .#  | 
                  .  |  M-C-01-1-1 
                  .  | 
                  .  | 

|  M-D-08-1-1 
   -3             .  + 
                     | 
                     | 
                     | 
                     | 

|  M-C-03-1-1 
   -4                + 

|  M-R-05-1-1 
                     | 
                     | 
                     | 
                     |               
   -5                + 
<low-skill students>|<easier items> 
EACH "#" IS 13. EACH "." IS 1 TO 12 
Key to item ID (e.g., M-C-03-1-1): M - Mathematics (test subject), C - Computations (content 
area), 03 – block number, 1 – test version number, 1 – level of mastery  

 

Figure 3.The SAM-Math variable map 
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Figure 4.Mathematical competence scale 
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50% of Level 3 items 

We expect student B to 
successfully complete at least 
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successfully complete at least 
50% of Level 1 items 

We expect student D to be 
unable to successfully 
complete even 50% of Level 
1 items 
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Figure 5. Distribution of fourth graders across proficiency levels: Study 1 
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Figure 6.Percent of Procedural, Conceptual and Functional-level items solved correctly at 

each grade: Study 2 
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Figure 7. Pattern of item difficulty for Level 3 items across grades: Study 2  
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Figure 8. Distribution of students across proficiency levels: Study 2 
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